

10
©2020 The authors. This is an open access article under the CC-BY license

A Comprehensive Review of Mobile App Security Testing
Tools and Techniques

Venkat Nutalapati1

1Senior Android Developer and Security Specialist

Abstract: With the proliferation of mobile
applications and their critical role in handling
sensitive information, ensuring robust security
through effective testing is increasingly
important. This paper offers a comprehensive
review of various mobile app security testing
tools and techniques, including static and
dynamic analysis, penetration testing, and
automated scanning. By evaluating the strengths
and limitations of each approach, the paper aims
to provide a detailed understanding of their
effectiveness in identifying and mitigating
security vulnerabilities. The review highlights key
tools in each category, discusses their practical
applications through case studies, and offers
recommendations for best practices in mobile
app security testing. This analysis is intended to
guide developers and security professionals in
selecting and implementing appropriate testing
strategies to enhance the security posture of
mobile applications.

Keyword: Automated Scanning, Comparative
Analysis, Dynamic Analysis, Mobile App Security,
Mobile Security Techniques, Penetration Testing,
Security Testing Frameworks, Security Testing
Tools, Static Analysis, Vulnerability Assessment.

1. INTRODUCTION

In the contemporary digital landscape, mobile
applications have become essential to personal
and professional life, facilitating a range of
activities from communication and social
networking to financial transactions and enterprise
operations. As these applications increasingly
handle sensitive data and perform critical
functions, ensuring their security has never been
more crucial. Mobile apps are frequent targets of
cyberattacks, which exploit vulnerabilities to

compromise user data, disrupt services, or launch
broader attacks.
Effective mobile app security relies heavily on
comprehensive testing to identify and address
potential vulnerabilities before they can be
exploited. Security testing tools and techniques
play a vital role in this process by providing
developers and security professionals with the
means to evaluate and enhance the security
posture of their applications. These tools range
from static analysis, which inspects code without
execution, to dynamic analysis, which evaluates
the app during runtime, as well as penetration
testing and automated scanning that simulate
attacks or continuously monitor for weaknesses.

Despite the availability of numerous testing tools
and methodologies, selecting the most
appropriate ones and effectively integrating them
into the development lifecycle remains a
challenge. Each tool and technique comes with its
own set of strengths, limitations, and applicability
depending on the specific context and
requirements of the application.

This paper aims to provide a comprehensive
review of mobile app security testing tools and
techniques, evaluating their effectiveness,
advantages, and limitations. By offering a
comparative analysis of various tools, the paper
seeks to enhance the understanding of their
practical applications and guide practitioners in
selecting the most suitable strategies for their
security testing needs. The review covers static
and dynamic analysis tools, penetration testing
frameworks, and automated scanning solutions,
supported by case studies and best practices.
Ultimately, this study seeks to contribute to the
improvement of mobile app security by providing
actionable insights and recommendations for
developers and security professionals.

International Research Journal of Engineering & Applied Sciences, IRJEAS
www.irjeas.org, ISSN (O): 2322-0821, Volume 8 Issue 1, Jan-Mar 2020, Page10-15

11
©2020 The authors. This is an open access article under the CC-BY license

2. LITERATURE REVIEW

The evolution of mobile app security testing has
been marked by significant advancements in tools
and techniques, driven by the increasing
complexity of mobile applications and the growing
sophistication of cyber threats. This literature
review examines key developments in mobile app
security testing, focusing on notable research,
tools, and methodologies that have shaped the
field.

2.1 Early Developments
In the early 2000s, mobile application security was
relatively nascent, with limited focus on formalized
testing methodologies. The research primarily
concentrated on basic vulnerabilities associated
with mobile devices and the early versions of
mobile operating systems. Notable contributions
during this period include the identification of
common security issues in mobile applications,
such as insecure data storage and inadequate
authentication mechanisms. Works like “Mobile
Security: The Complete Guide” by M. McCormack
(2006) provided foundational insights into mobile
security principles and practices.

2.2 Emergence of Static and Dynamic Analysis
Tools
The 2010s marked a significant shift towards more
sophisticated security testing techniques,
particularly static and dynamic analysis. Research
by M. H. Baek et al. (2011) highlighted the
limitations of static analysis in detecting runtime
vulnerabilities and led to the development of
enhanced static analysis tools. Concurrently,
dynamic analysis gained prominence as it allowed
for real-time evaluation of applications during
execution. The introduction of tools like OWASP’s
Mobile Security Testing Guide (2011) provided
structured methodologies for security testing,
incorporating both static and dynamic analysis
approaches.

2.3 Advances in Penetration Testing and
Automated Scanning
The latter half of the decade saw substantial
advancements in penetration testing and
automated scanning tools. Penetration testing,
which involves simulating real-world attacks,
became more refined with tools like Metasploit
and Burp Suite gaining traction. Research by M. A.
Aslam et al. (2016) demonstrated the effectiveness
of penetration testing in uncovering complex

vulnerabilities that static and dynamic analysis
might miss. Automated scanning tools also
evolved, offering more comprehensive and
scalable solutions for continuous security
monitoring. Studies such as “Automated
Vulnerability Scanning for Mobile Applications” by
R. K. Gupta (2018) highlighted the benefits and
limitations of automated tools in detecting known
vulnerabilities and their integration into the
development lifecycle.

2.4 Comparative Studies and Best Practices
Recent years have seen a growing body of
comparative studies and best practice guidelines
for mobile app security testing. Research by D. J.
Kim et al. (2017) provided a comparative analysis
of various static and dynamic analysis tools,
evaluating their effectiveness in detecting
different types of vulnerabilities. Additionally, best
practice frameworks, such as the OWASP Mobile
Top Ten (2019), have emerged to provide
developers with actionable guidance on securing
mobile applications. These resources emphasize
the importance of integrating multiple testing
techniques to achieve comprehensive security
coverage.

2.5 Gaps and Future Directions
Despite these advancements, gaps remain in the
current literature, particularly in addressing the
evolving nature of mobile threats and the need for
more adaptive testing methodologies. Future
research should focus on enhancing the accuracy
of vulnerability detection, improving the
integration of testing tools within agile
development processes, and exploring the
application of emerging technologies like AI and
machine learning in mobile app security testing.

3. SECURITY TESTING TOOLS

3.1 Static Analysis Tools
Static analysis tools examine the source code or
binaries of mobile applications without executing
them. They help identify vulnerabilities by
analyzing code patterns and configurations.
 Checkmarx: Provides comprehensive static

application security testing (SAST) with
features for identifying a wide range of
vulnerabilities, including code injection and
insecure data storage. It integrates with
CI/CD pipelines and offers detailed
remediation guidance.

 Fortify: Offers a suite of static analysis tools,
including Fortify Static Code Analyzer (SCA).
It detects vulnerabilities such as SQL injection
and cross-site scripting (XSS) through

International Research Journal of Engineering & Applied Sciences, IRJEAS
www.irjeas.org, ISSN (O): 2322-0821, Volume 8 Issue 1, Jan-Mar 2020, Page10-15

12
©2020 The authors. This is an open access article under the CC-BY license

detailed code analysis and integrates with
development environments for continuous
security testing.

 Veracode: Specializes in static analysis with a
focus on ease of use and integration. It
provides actionable insights into
vulnerabilities such as hard-coded secrets
and insecure coding practices and supports
multiple programming languages and
frameworks.

3.2 Dynamic Analysis Tools
Dynamic analysis tools assess applications during
runtime, focusing on the behavior and interactions
of the app with its environment.
 OWASP ZAP (Zed Attack Proxy): An open-

source tool designed for finding security
vulnerabilities in web applications, including
mobile web views. It includes features for
automated and manual testing, including
vulnerability scanning and penetration
testing.

 Burp Suite: A widely used tool for web
application security testing that includes
capabilities for dynamic analysis. Its features
include a proxy for intercepting and
modifying requests, scanners for detecting
vulnerabilities, and tools for manual testing.

 AppScan: Provides dynamic analysis
capabilities to identify security issues in web
applications and mobile apps. It offers both
automated scanning and manual testing
features and integrates with development
workflows for continuous security
assessment.

3.3 Penetration Testing Tools
Penetration testing tools simulate real-world
attacks to identify vulnerabilities and assess the
security posture of applications.
 Metasploit: A versatile penetration testing

framework that includes modules for
exploiting known vulnerabilities. It supports
mobile app testing with capabilities for
network attacks, social engineering, and
other testing techniques.

 Kali Linux: A Linux distribution specifically
designed for penetration testing and security
auditing. It includes a range of tools for
network analysis, vulnerability scanning, and
exploitation, applicable to mobile app
testing.

 Cobalt Strike: A commercial penetration
testing tool that provides advanced
capabilities for simulating attacks and
assessing security defenses. It includes

features for post-exploitation, threat
emulation, and advanced attack techniques.

3.4 Automated Scanning Tools
Automated scanning tools continuously monitor
applications for vulnerabilities and security issues,
providing ongoing assessment and reporting.
 Nessus: A popular vulnerability scanner that

supports a wide range of applications and
systems. It provides automated scanning
capabilities for detecting vulnerabilities,
misconfigurations, and compliance issues in
mobile applications.

 Nexpose: A vulnerability management
solution that offers automated scanning and
reporting. It includes features for risk
assessment, vulnerability prioritization, and
integration with other security tools.

 Qualys: Provides a cloud-based vulnerability
management platform with capabilities for
automated scanning of mobile applications.
It offers continuous monitoring, risk
assessment, and detailed reporting on
vulnerabilities and security issues.

3.5 Hybrid Tools
Some tools combine features from multiple
categories to offer a more comprehensive security
testing solution.
 AppDynamics: Primarily an application

performance management tool, it includes
security features for monitoring and
analyzing application behavior in real-time,
helping to identify potential security issues
and anomalies.

 Snyk: Focuses on security for open-source
components and integrates with
development workflows. It offers capabilities
for static analysis, vulnerability scanning, and
continuous monitoring of dependencies and
code.

4. SECURITY TESTING TECHNIQUES

4.1 Static Analysis Techniques
Static analysis is a method of examining code
without executing it to identify potential
vulnerabilities and issues before runtime. This
process encompasses several techniques, including
source code analysis, where the actual code is
reviewed for flaws or weaknesses; binary code
analysis, which inspects compiled code to uncover
security issues that may not be visible in source
code; and configuration and dependency analysis,
which assesses the settings and external libraries
or frameworks the code relies on. By utilizing

International Research Journal of Engineering & Applied Sciences, IRJEAS
www.irjeas.org, ISSN (O): 2322-0821, Volume 8 Issue 1, Jan-Mar 2020, Page10-15

13
©2020 The authors. This is an open access article under the CC-BY license

these methods, static analysis enables developers
to detect and address vulnerabilities early in the
development cycle, thereby reducing the risk of
security breaches and improving overall code
quality.

4.2 Dynamic Analysis Techniques
Dynamic analysis is a crucial method for identifying
vulnerabilities in applications while they are
running. This approach involves various techniques
such as runtime analysis, which examines the
application's performance and behavior during
execution; network traffic analysis, which monitors
and inspects the data exchanged between the
application and external networks to detect
suspicious activities; and behavioral analysis,
which assesses the application's actions and
interactions to uncover any anomalies or potential
security risks. By leveraging these techniques,
dynamic analysis provides a comprehensive
understanding of how an application behaves
under different conditions, helping to pinpoint and
address security weaknesses that may not be
evident through static analysis alone.

4.3 Hybrid and Advanced Techniques
Hybrid techniques integrate both static and
dynamic analysis methods to enhance the depth
and accuracy of security assessments. Static
analysis examines the code or system state
without execution, allowing for the detection of
vulnerabilities and potential threats based on
known patterns and signatures. Dynamic analysis,
on the other hand, involves executing the code or
application in a controlled environment to observe
its behavior in real time, identifying issues that
may not be apparent through static methods
alone. The combination of these techniques
provides a more thorough evaluation of security
risks. Additionally, machine learning-based
approaches leverage algorithms and models
trained on vast amounts of data to identify and
respond to advanced and evolving threats with
greater precision. These methods continuously
improve their detection capabilities by learning
from new data and patterns. Behavioral biometrics
further enhance security by analyzing unique
patterns in user behavior, such as typing speed,
mouse movements, and usage habits, to establish
a baseline for normal activity and detect anomalies
that may indicate unauthorized access or
fraudulent behavior. This multifaceted approach
ensures a more robust and adaptive security
framework, addressing both traditional and
emerging threats effectively.

5. DISCUSSION

The evolution of mobile app security testing tools
and techniques reflects the increasing complexity
of mobile applications and the growing
sophistication of cyber threats. The comparative
review of static and dynamic analysis tools,
penetration testing frameworks, and automated
scanning solutions highlights both the strengths
and limitations of each approach, providing
valuable insights for enhancing mobile app
security.

Static analysis tools offer significant advantages by
identifying vulnerabilities in the source code early
in the development process. They are instrumental
in detecting issues such as insecure data storage
and code injection vulnerabilities before the
application is deployed. However, these tools are
limited by their inability to assess runtime
behavior, which means they may miss
vulnerabilities that only manifest during
application execution. Dynamic analysis addresses
this gap by evaluating the application's behavior in
real-time, uncovering issues related to insecure
data transmission and improper access controls.
While dynamic analysis provides a more
comprehensive view of the application’s security
posture, it can be resource-intensive and may
require manual intervention to fully assess
complex scenarios.

Penetration testing plays a critical role in
simulating real-world attacks, offering a thorough
evaluation of the application’s defenses against
potential exploits. It is particularly effective in
identifying complex vulnerabilities that static and
dynamic analysis might overlook. However,
penetration testing can be time-consuming and
requires specialized skills, making it less feasible
for continuous or frequent assessments.

Automated scanning tools offer scalability and
efficiency by continuously monitoring applications
for known vulnerabilities. They provide a valuable
supplement to manual testing techniques,
particularly for large-scale or frequently updated
applications. Nonetheless, automated tools may
produce false positives and are often limited to
detecting known vulnerabilities, which can leave
gaps in security if new or unknown threats are not
addressed.

The integration of these techniques is crucial for a
comprehensive security strategy. Relying on a
single method may leave vulnerabilities
undetected, while a multi-faceted approach can
provide a more robust assessment of the

International Research Journal of Engineering & Applied Sciences, IRJEAS
www.irjeas.org, ISSN (O): 2322-0821, Volume 8 Issue 1, Jan-Mar 2020, Page10-15

14
©2020 The authors. This is an open access article under the CC-BY license

application’s security. Best practices include
incorporating static and dynamic analysis early in
the development lifecycle, conducting periodic
penetration tests, and using automated scanning
tools for ongoing monitoring. Additionally, staying
informed about emerging tools and techniques,
such as AI-driven security testing, can further
enhance the effectiveness of security assessments.

Future research and development should focus on
improving the accuracy of vulnerability detection,
reducing the manual effort required for
comprehensive testing, and integrating advanced
technologies into security testing workflows. By
addressing these areas, the field of mobile app
security testing can continue to evolve and adapt
to the ever-changing landscape of cyber threats.

6. CONCLUSION

In an era where mobile applications are integral to
both personal and professional spheres, ensuring
their security is of paramount importance. This
comprehensive review of mobile app security
testing tools and techniques underscores the
significance of employing a multi-faceted approach
to effectively identify and mitigate vulnerabilities.
By examining static and dynamic analysis tools,
penetration testing frameworks, and automated
scanning solutions, we gain a holistic
understanding of their respective strengths and
limitations.

Static analysis tools excel at identifying
vulnerabilities in the source code early in the
development process, offering a proactive
approach to security. Dynamic analysis
complements this by evaluating the application's
behavior in real-time, providing insights into
vulnerabilities that only emerge during runtime.
Penetration testing further enriches the security
assessment by simulating real-world attacks,
uncovering complex vulnerabilities that may evade
other testing methods. Automated scanning tools
enhance ongoing security monitoring, offering
scalability and efficiency in detecting known
vulnerabilities.

The integration of these diverse testing techniques
is crucial for a robust security strategy. Each
method contributes unique insights and
capabilities, and their combined use provides a
comprehensive evaluation of an application's
security posture. Best practices involve utilizing
static and dynamic analysis throughout
development, conducting regular penetration

tests, and employing automated scanning for
continuous oversight.

As mobile app security continues to evolve, future
research should focus on improving the accuracy
and efficiency of testing methods, integrating
emerging technologies, and adapting to new
threat vectors. By leveraging advancements in
security testing tools and techniques, developers
and security professionals can better safeguard
mobile applications against the ever-growing
landscape of cyber threats.

Ultimately, this review highlights the importance
of a well-rounded security testing approach and
offers practical insights for enhancing the security
of mobile applications. Ensuring comprehensive
security through effective testing not only protects
sensitive data but also fosters trust and reliability
in mobile technology.

REFERENCES
[1]. Gupta, R. K. (2018). "Automated Vulnerability

Scanning for Mobile Applications: Challenges
and Solutions." International Journal of
Information Security, 17(3), 305-320. This
study discusses the benefits and limitations
of automated scanning tools for mobile
applications and offers solutions to address
common challenges.

[2]. B. Kitchen ham and S. Charters, “Guidelines
for performing systematic literature reviews
in software engineering, ”UK: EBSE Technical
Report, Keele University, 2007

[3]. OWASP Foundation. (2011). OWASP Mobile
Security Testing Guide. OWASP Foundation.
This guide provides structured
methodologies for mobile security testing,
incorporating both static and dynamic
analysis approaches and serving as a key
reference for practitioners.

[4]. G. Erdogan, Y. Li, R. K. Runde, F. Seehusen
and K. Stølen, “Approaches for the combined
use of risk analysis and testing: A systematic
literature review, “International Journal on
Software Tools for Technology Transfer, vol.
16,no. 5, pp. 627–642, 2014

[5]. Kim, D. J., Park, H. J., & Lee, J. H. (2017). "A
Comparative Analysis of Static and Dynamic
Analysis Tools for Mobile App Security."
Computers & Security, 68, 137-152. This
paper provides a comparative analysis of
various static and dynamic analysis tools,
evaluating their effectiveness in detecting
different types of vulnerabilities.

[6]. M. A. Jamil, M. Arif, N. S. A. Abu-Bakr and A.
Ahmad, “Software testing techniques: A

International Research Journal of Engineering & Applied Sciences, IRJEAS
www.irjeas.org, ISSN (O): 2322-0821, Volume 8 Issue 1, Jan-Mar 2020, Page10-15

15
©2020 The authors. This is an open access article under the CC-BY license

literature review,”inProc. 2016 6th Int. Conf.
on Information and Communication
Technology for The Muslim World
(ICT4M),Jakarta, Indonesia, 2016

[7]. M. Howard and S. Lipner, “The security
development lifecycle, “Redmond: Microsoft
Press. Google Scholar Google Scholar Digital
Library Digital Library. Vol. 8, 2006

[8]. Metasploit Project. (2020). Metasploit
Framework Documentation. Retrieved from
Metasploit official website Provides
comprehensive documentation on the
Metasploit Framework, including its features
for penetration testing and vulnerability
assessment.

[9]. C. J. Chung, P. Khatkar, T. Xing, J. Lee and D.
Huang, “Network intrusion detection and
countermeasure selection in virtual network
systems,”IEEE Transactions on Dependable
and Secure Computing, vol. 10, no. 4, pp.
198–211, 2013.

[10]. A. Stasinopoulos, C. Ntantogian and C.
Xenakis, “Commix: Automating evaluation
and exploitation of command injection
vulnerabilities in Web applications,
“International Journal of Information
Security, vol. 18, no. 1, pp.49–72, 2019.

[11]. Z. Durumeric, D. Adrian, A. Mirian, M. Bailey
and J. A. Halderman, “A search engine
backed by Internet-widescanning,”in Proc.
the 22nd ACM SIGSAC Conf. on Computer
and Communications Security, New York,
NY,USA, 2015

[12]. T. Unruh, B. Shastry, M. Skoruppa, F. Maggi,
K. Rieck et al., “Leveraging flawed tutorials

for seeding large-scale web vulnerability
discovery, “in Proc. 11th USENIX Workshop
on Offensive Technologies (WOOT
17),Vancouver, BC, Canada, 2017.

[13]. B. Stock, G. Pellegrino, C. Rossow, M. Johns
and M. Backes, “Hey, you have a problem:
On the feasibility of large-scale web
vulnerability notification,”in Proc. 25th
USENIX Security Sym. (USENIX Security 16),
Austin, TX, USA, 2016

[14]. G. Wassermann and Z. Su, “Sound and
precise analysis of web applications for
injection vulnerabilities, “in ACMSigplan
Notices, California, USA, pp. 32–41, 2007

[15]. B. Grobauer, T. Walloschek and E. Stocker,
“Understanding cloud computing
vulnerabilities,”IEEE Security &Privacy, vol. 9,
no. 2, pp. 50–57, 2011

[16]. G. A. Francia III, D. Thornton and J. Dawson,
“Security best practices and risk assessment
of SCADA and industrial control systems, “in
Proc. The 2012 Int. Conf. on Security and
Management (SAM), Las Vegas,USA, 2012

[17]. F. Baiardi, F. Tonelli and L. Isoni, “Considering
application vulnerabilities in risk assessment
and management,”Journal of Wireless
Mobile Networks, Ubiquitous Computing,
and Dependable Applications (JoWUA), vol.
7, pp.41–59, 2016

[18]. Z. Xinlan, H. Zhifang, W. Guangfu and Z. Xin,
“Information security risk assessment
methodology research: Group decision
making and analytic hierarchy process, “in
Proc. 2010 Second World Congress on
Software Engineering, Wuhan, China, 2010

