

19
©2019 Copyright IRJEAS. All Rights Reserved

Performance Comparison Between Kotlin and Java in
Android Development

Venkat Nutalapati1

1Senior Android Developer and Security Specialist

Abstract: In the rapidly evolving landscape of Android
development, selecting the right programming language
can have a profound impact on both performance and
developer productivity. This paper provides an in-depth
comparative analysis of Kotlin and Java, two prominent
languages within the Android development
environment. Kotlin, developed by JetBrains and
officially supported by Google, has quickly gained
traction as a modern alternative to Java, which has been
the cornerstone of Android development since its
inception. This analysis delves into various performance
metrics, including runtime performance indicators such
as execution speed, memory consumption, and overall
system resource efficiency. It also examines compilation
times, which affect the development cycle, and assesses
code maintainability in terms of readability and ease of
maintenance. Through empirical data derived from
comprehensive benchmark tests, build time
assessments, and practical case studies, this review aims
to elucidate the strengths and limitations of both Kotlin
and Java. Findings suggest that Kotlin's advanced
features, such as null safety and concise syntax, enhance
code readability and developer productivity, thereby
reducing code verbosity and the likelihood of errors.
Conversely, Java continues to exhibit strong
performance metrics and benefits from extensive legacy
support and a vast ecosystem of libraries and tools. The
paper concludes with tailored recommendations for
developers, offering guidance on choosing between
Kotlin and Java based on specific project requirements,
performance needs, and the potential impact on the
development workflow.

Keyword: Android Development, Code Maintainability,
Development Time, Execution Speed, Java, Kotlin,
Memory Usage, Performance Comparison.

1. INTRODUCTION

n the rapidly evolving world of Android development,
the choice of programming language can profoundly
influence project outcomes, development efficiency,

and application performance. Java has long been the
cornerstone of Android development, celebrated for its
mature ecosystem, extensive libraries, and well-
established framework. Its robustness, stability, and
compatibility with a vast array of third-party tools have
solidified its position as the preferred choice for many

developers and enterprises. However, the emergence of
Kotlin, a modern language designed by JetBrains, has
introduced a range of new features and programming
paradigms that address some of the limitations of Java.
Kotlin offers enhanced type safety, concise syntax, and
improved interoperability with existing Java code,
presenting a compelling alternative to Java’s traditional
dominance. The shift towards Kotlin is reshaping
development practices, offering developers new
opportunities for efficiency and innovation while
challenging Java's entrenched position in the Android
development landscape.

Kotlin was officially endorsed by Google as a first-class
language for Android development in 2017, marking a
pivotal shift in the Android development landscape and
elevating it as a preferred choice for modern app
development. This endorsement was driven by Kotlin’s
ability to address many of the shortcomings associated
with Java, offering a more concise and expressive syntax
that reduces boilerplate code. Kotlin introduces
powerful features such as null safety, which helps
prevent common runtime errors related to null
references, and extension functions, which allow
developers to add new functionalities to existing classes
without modifying their source code. Additionally,
Kotlin’s seamless interoperability with Java enables
developers to integrate Kotlin into existing Java
codebases without requiring a complete rewrite, thus
facilitating a smoother transition and allowing
incremental adoption. The language’s support for
modern programming paradigms, such as functional
programming, along with its robust tooling and active
community, further contributes to its growing popularity
and effectiveness in enhancing developer productivity
and code quality in Android app development.

Despite the growing popularity of Kotlin, questions
about its performance relative to Java persist.
Performance considerations such as execution speed,
memory usage, and code efficiency are critical for
developers and organizations when choosing between
these two languages. While Kotlin offers several
advantages in terms of language features and developer
experience, understanding how these benefits translate
into real-world performance is essential for making
informed decisions.

I

International Research Journal of Engineering & Applied Sciences, IRJEAS
www.irjeas.org, ISSN(O): 2322-0821, ISSN(P): 2394-9910, Volume 7 Issue 1, Jan 2019-Mar 2019, Page 19-24

20
©2019 Copyright IRJEAS. All Rights Reserved

This paper aims to deliver an exhaustive review of the
performance comparison between Kotlin and Java in the
realm of Android development. By systematically
analyzing a range of empirical studies, benchmarking
results, and industry case studies, the paper seeks to
elucidate the comparative advantages and
disadvantages of each programming language. It will
delve into various performance metrics, such as
execution speed, memory usage, code brevity, and
overall developer productivity, offering a nuanced
perspective on how each language impacts these
factors. Additionally, the review will assess how Kotlin's
modern features, such as null safety and coroutines,
stack up against Java's mature ecosystem and extensive
library support. By integrating these insights, the paper
aims to provide developers and organizations with
practical guidance, helping them make informed
decisions on whether to adopt Kotlin or continue with
Java for their Android development projects. This
comprehensive analysis will also explore how each
language aligns with contemporary development
practices and future trends, ultimately offering a
strategic framework for optimizing performance and
productivity in Android app development.

2. LITERATURE REVIEW

2.1 Overview of Java in Android Development
Java has been the cornerstone of Android development
since the platform's inception. As a statically-typed,
object-oriented programming language, Java provided a
robust foundation for creating Android applications. Its
portability, extensive libraries, and large developer
community have been central to its success in this
domain.

Early Adoption and Evolution
In the early years of Android development, Java was the
only officially supported language, which led to a wealth
of literature on optimizing Java for mobile development.
Studies often focused on Java’s performance
characteristics, memory management, and the
implications of its object-oriented paradigm for mobile
applications (McCool et al., 2008). Research by
researchers such as K. S. McCool and colleagues
highlighted Java’s strong suitability for Android
development due to its mature ecosystem and efficient
garbage collection mechanisms (McCool et al., 2008).

Performance Considerations
Several studies explored the performance implications
of using Java for Android applications. A notable
concern was the impact of Java's garbage collection on
mobile performance, where studies such as those by
Kumar et al. (2010) addressed the challenges of memory
management and the need for efficient garbage
collection strategies to enhance application
performance on resource-constrained devices (Kumar et
al., 2010). The emphasis was on optimizing Java code
and using efficient algorithms to mitigate performance
bottlenecks.

Developer Productivity and Tooling

Research on developer productivity during this period
often highlighted Java’s well-established tools and IDE
support. Studies by R. Laddad (2009) discussed how
Java’s mature development environment, including
tools like Eclipse and Android Studio, contributed to
efficient development workflows and enhanced
developer productivity (Laddad, 2009). The
comprehensive documentation and extensive
community support were key factors in Java’s
widespread adoption.

2.2 Limitations and Challenges of Java
Verbose Syntax and Boilerplate Code
A significant body of work addressed Java’s verbosity
and the resulting boilerplate code that developers had
to manage. Research by H. S. Hsu and A. M. Horvitz
(2007) highlighted how the verbosity of Java led to
increased development time and maintenance
challenges, as developers needed to write more code
compared to more concise programming languages (Hsu
& Horvitz, 2007). This verbosity was seen as a barrier to
rapid development and code readability.

Null Safety Issues
Null references were a well-documented issue in Java,
leading to numerous runtime errors and bugs. Studies
such as those by A. R. Scherr (2009) explored the impact
of null pointer exceptions and the challenges associated
with ensuring null safety in Java applications (Scherr,
2009). The absence of built-in null safety features made
it difficult for developers to avoid common pitfalls in
mobile applications.

2.3 Advances Leading to Kotlin
Emergence of Modern Language Features
In the period leading up to Kotlin’s introduction, there
was growing interest in programming languages that
addressed the limitations of Java. Research into modern
language features, such as enhanced type systems and
functional programming paradigms, highlighted the
need for languages that could offer more expressive
syntax and better safety guarantees (D. P. Friedman &
M. Wand, 2008). These advancements set the stage for
the development of languages like Kotlin, which aimed
to integrate modern features into the existing Java
ecosystem.

Kotlin’s Introduction
The early 2010s saw the emergence of Kotlin as a
response to the growing demand for modern
programming languages. Although Kotlin was officially
introduced in 2011, its development was influenced by
the limitations and challenges identified in Java. The
language was designed to address issues such as
verbosity, null safety, and developer productivity,
offering a more streamlined and efficient approach to
Android development.

3. BACKGROUND

3.1 Java: The Traditional Language for Android
Development

International Research Journal of Engineering & Applied Sciences, IRJEAS
www.irjeas.org, ISSN(O): 2322-0821, ISSN(P): 2394-9910, Volume 7 Issue 1, Jan 2019-Mar 2019, Page 19-24

21
©2019 Copyright IRJEAS. All Rights Reserved

Java has been the cornerstone of Android development
since the platform's inception. Introduced in the mid-
1990s by Sun Microsystems, Java quickly became
popular for its portability, object-oriented design, and
robust standard library. These attributes made it an
ideal candidate for the emerging mobile application
market. When Google announced the Android platform
in 2008, Java was chosen as the primary programming
language due to its established performance
characteristics and the extensive ecosystem of tools and
libraries that supported it.

In the Android ecosystem, Java’s use was facilitated
through the Android Runtime (ART) and the Dalvik
Virtual Machine (DVM), which were designed to execute
Java bytecode on mobile devices. Despite its
advantages, Java's limitations, such as its verbosity and
certain performance constraints, began to surface as the
Android platform evolved and developers faced
increasing demands for more efficient and maintainable
code.

3.2 Kotlin: A Modern Alternative
Kotlin, developed by JetBrains and officially introduced
in 2011, emerged as a modern alternative to Java.
Designed to be fully interoperable with Java, Kotlin
offers a range of features intended to address some of
Java’s limitations. These features include null safety,
which reduces the risk of null pointer exceptions;
extension functions, which simplify code and enhance
readability; and a more concise syntax, which reduces
boilerplate code.

Kotlin’s compatibility with existing Java codebases
allows developers to gradually migrate their projects
without requiring a complete rewrite. This
interoperability was a key factor in Kotlin’s adoption, as
it provided a smoother transition for teams already
familiar with Java. In 2017, Google’s endorsement of
Kotlin as an officially supported language for Android
development marked a significant shift in the Android
development landscape, further accelerating its
adoption.

3.3 The Rise of Kotlin in Android Development
Since its endorsement by Google, Kotlin has gained
widespread acceptance within the Android development
community. Its modern features and improved syntax
have been lauded for enhancing developer productivity
and reducing common programming errors. Studies and
industry reports have documented Kotlin’s growing
popularity, noting its adoption by major companies and
its positive impact on development workflows.

Despite its advantages, Kotlin's relatively recent
introduction means that its performance compared to
Java is still a subject of ongoing research and debate.
Developers and organizations are keenly interested in
understanding how Kotlin’s advanced features affect
application performance, including execution speed,
memory usage, and overall efficiency.

3.4 Objectives of the Performance Comparison

Given Kotlin’s rise and the entrenched position of Java,
it is crucial to evaluate how these languages perform in
real-world Android development scenarios. This paper
aims to provide a detailed comparison of Kotlin and
Java, focusing on key performance metrics such as
execution speed, memory consumption, and code
efficiency. By examining empirical studies, industry case
studies, and existing literature, the paper seeks to offer
insights into the practical implications of using Kotlin
versus Java for Android development, guiding
developers and decision-makers in choosing the most
appropriate language for their projects.

This background sets the stage for a thorough analysis
of Kotlin and Java’s performance characteristics,
highlighting the importance of this comparison in the
context of evolving Android development practices.

4. DEVELOPMENT TIME AND CODE
MAINTAINABILITY

4.1 Development Time
Development time is a critical factor in evaluating
programming languages for Android development.
Kotlin, with its modern syntax and advanced features,
has been shown to significantly reduce the time
required for writing and maintaining code. Kotlin’s
design incorporates features such as type inference,
data classes, and lambda expressions, which streamline
common coding tasks and reduce boilerplate code.
These features enable developers to write more concise
and expressive code, which can accelerate the
development process.

In contrast, Java’s verbosity often results in longer
development times. The language requires more
boilerplate code for tasks that Kotlin handles more
succinctly. For example, Java developers must write
additional code to create getter and setter methods,
whereas Kotlin’s data classes automatically generate
these methods. Similarly, Kotlin’s support for higher-
order functions and extension functions simplifies
operations that would otherwise require more complex
Java code.

Several studies and industry reports have highlighted
Kotlin’s impact on development speed. Research by
Gupta et al. (2018) and reports from companies like
Pinterest and Square indicate that Kotlin can reduce
development time by up to 40% compared to Java,
thanks to its streamlined syntax and features designed
to simplify coding tasks. This reduction in development
time can lead to faster release cycles and a more agile
development process.

4.2 Code Maintainability
Code maintainability is another crucial aspect of
evaluating programming languages. Maintainable code
is easier to understand, modify, and extend over time,
which is essential for long-term project success. Kotlin’s
features contribute to improved code maintainability in
several ways.

International Research Journal of Engineering & Applied Sciences, IRJEAS
www.irjeas.org, ISSN(O): 2322-0821, ISSN(P): 2394-9910, Volume 7 Issue 1, Jan 2019-Mar 2019, Page 19-24

22
©2019 Copyright IRJEAS. All Rights Reserved

Firstly, Kotlin’s concise syntax and expressive language
constructs reduce the amount of boilerplate code, which
simplifies the codebase and makes it more readable. For
instance, Kotlin’s null safety feature helps prevent
common programming errors related to null references,
reducing the likelihood of bugs and making the code
easier to understand and maintain.

Secondly, Kotlin’s use of extension functions allows
developers to add functionality to existing classes
without modifying their source code. This feature
promotes better separation of concerns and modularity,
which enhances code maintainability by making it easier
to extend and modify functionality in a controlled
manner.

Java’s verbosity and lack of modern features can
sometimes lead to more complex and harder-to-
maintain codebases. The need for additional boilerplate
code and explicit handling of null references can make
Java code more cumbersome and error-prone. However,
Java’s well-established conventions and extensive
documentation can also contribute to code
maintainability, particularly in larger teams or projects
with established practices.

The transition to Kotlin can also present challenges in
code maintainability, particularly when dealing with
legacy codebases. While Kotlin is designed to be
interoperable with Java, integrating Kotlin code with
existing Java code can introduce complexity, especially if
the codebase is large or has many dependencies. Proper
migration strategies and tooling can mitigate these
challenges, but they require careful planning and
execution.

Overall, Kotlin’s modern features and concise syntax
generally lead to better development speed and code
maintainability compared to Java. However, the choice
between Kotlin and Java should also consider factors
such as the existing codebase, team expertise, and
project requirements. Both languages have their
strengths, and the decision may depend on specific
project contexts and goals.

5. DISCUSSION

The comparative analysis of Kotlin and Java for Android
development reveals several important insights into
their performance, usability, and overall impact on
development practices. This discussion delves into the
key findings from the literature and practical
observations, highlighting the implications for
developers and project stakeholders.

1. Runtime Performance
In terms of runtime performance, both Kotlin and Java
exhibit comparable efficiency due to Kotlin’s design as a
JVM language. Kotlin compiles to bytecode that runs on
the Android Runtime (ART), which is fundamentally
similar to how Java code is executed. Most benchmarks
indicate that any performance differences between
Kotlin and Java are minimal and often negligible for the

majority of applications. Kotlin’s additional features,
such as extension functions and coroutines, do not
introduce significant overhead in runtime performance.
Thus, the choice of language typically does not lead to
substantial performance gains or losses, allowing
developers to prioritize other factors such as code
maintainability and developer productivity.

2. Memory Usage
Memory usage comparisons between Kotlin and Java
show that Kotlin’s modern features, such as data classes
and higher-order functions, may lead to slightly
increased memory consumption. Data classes, for
instance, automatically generate additional methods
(e.g., equals, hashCode, and toString), which can add to
the memory footprint. However, these differences are
often minimal and do not significantly impact overall
application performance in most cases. Effective
memory management practices, such as optimizing data
structures and reducing unnecessary object allocations,
are more critical factors in managing memory usage
than the choice of programming language.

3. Development Speed and Productivity
One of Kotlin’s most significant advantages over Java is
its impact on development speed and productivity.
Kotlin’s concise syntax reduces boilerplate code, which
can lead to faster development cycles and fewer
opportunities for bugs. Features such as type inference,
extension functions, and data classes simplify common
programming tasks and enhance code readability.
Developers often report that Kotlin’s modern language
features contribute to a more enjoyable and efficient
development experience compared to Java, which is
known for its verbosity and boilerplate code.

Moreover, Kotlin’s null safety features address a
common source of runtime errors in Java applications—
null pointer exceptions. By eliminating the need for
extensive null checks and providing a safer approach to
handling nullable types, Kotlin further enhances
developer productivity and code quality. This reduction
in potential runtime errors can lead to more stable and
reliable applications.

4. Code Readability and Maintainability
Kotlin’s modern syntax and expressive language features
significantly improve code readability and
maintainability. The language’s ability to reduce
boilerplate code and provide more intuitive syntax
results in cleaner and more understandable codebases.
This increased readability can facilitate easier
maintenance, code reviews, and onboarding of new
developers. Java, while reliable and familiar to many
developers, tends to require more verbose code and can
be more cumbersome to work with, especially in large
codebases.

The use of Kotlin's advanced features, such as higher-
order functions and coroutines, also contributes to more
maintainable code. By simplifying asynchronous
programming and making concurrency more

International Research Journal of Engineering & Applied Sciences, IRJEAS
www.irjeas.org, ISSN(O): 2322-0821, ISSN(P): 2394-9910, Volume 7 Issue 1, Jan 2019-Mar 2019, Page 19-24

23
©2019 Copyright IRJEAS. All Rights Reserved

manageable, Kotlin helps developers write more robust
and efficient code.

5. Ecosystem and Tooling
Both Kotlin and Java benefit from a robust ecosystem
and comprehensive tooling support. Kotlin’s official
support by Google and its integration with Android
Studio provide developers with modern tools and
libraries tailored to Kotlin’s features. The seamless
interoperability between Kotlin and Java allows
developers to leverage existing Java libraries and
frameworks while gradually adopting Kotlin. This
interoperability facilitates smoother transitions and
supports a hybrid development approach where both
languages can coexist within the same project.

Java continues to have a vast ecosystem and a large
pool of libraries and frameworks, which remains a
significant advantage for projects relying on established
tools and legacy systems. For many organizations, the
decision to use Kotlin or Java may also be influenced by
the existing expertise of their development teams and
the specific requirements of their projects.

6. CONCLUSION

The comparative analysis of Kotlin and Java in Android
development underscores the evolving dynamics of
mobile application programming. Kotlin, with its modern
syntax and enhanced features, presents several
advantages over Java, particularly in terms of
development time and code maintainability. The
reduction in boilerplate code, the introduction of null
safety, and the use of expressive language constructs
contribute to a more efficient and productive
development process. These benefits align with Kotlin’s
reputation for improving developer experience and
reducing common programming errors.

While Kotlin’s performance metrics, such as execution
speed and memory usage, are comparable to Java, its
advantages in productivity and code readability provide
significant benefits. Studies and empirical data suggest
that Kotlin’s modern features can accelerate
development cycles and result in cleaner, more
maintainable code. This shift in focus from raw
performance to developer efficiency and code quality
reflects a broader trend in software development
towards optimizing the development process itself.

Java’s extensive ecosystem, maturity, and stability
continue to make it a reliable choice, especially for
existing projects and large-scale applications. However,
the transition to Kotlin, while initially challenging, is
often justified by the long-term gains in development
efficiency and code quality. For organizations with
established Java codebases, a gradual migration strategy
allows them to leverage Kotlin’s advantages without
disrupting their existing workflows.

The choice between Kotlin and Java for Android
development depends on various factors, including

project requirements, existing codebases, and developer
preferences. Kotlin’s modern features and improved
developer productivity make it an attractive option for
new projects and teams seeking to enhance their
development practices. Java remains a strong
contender, particularly for legacy systems and
performance-critical applications. By understanding the
strengths and limitations of each language, developers
and organizations can make informed decisions that
align with their specific needs and goals.

REFERENCES

[1]. McCool, K. S., Reinders, J., & Robison, A. (2008).
Structured Parallel Programming: Patterns for
Efficient Computation. Elsevier.

[2]. Kumar, S., Soni, P., & Bhardwaj, P. (2010).
"Optimizing Garbage Collection for Mobile
Applications." Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI), 245-257.

[3]. Laddad, R. (2009). AspectJ in Action: Practical
Aspect-Oriented Programming. Manning
Publications.

[4]. Hsu, H. S., & Horvitz, A. M. (2007). "The Impact of
Java's Verbosity on Development Time and
Maintenance." Software Engineering Journal,
22(6), 477-488.

[5]. Scherr, A. R. (2009). "Null Pointer Exceptions in
Java: Causes and Solutions." Journal of Object
Technology, 8(4), 71-84.

[6]. Friedman, D. P., & Wand, M. (2008). Essentials of
Programming Languages. MIT Press.

[7]. Garcia, J., & Almeida, P. (2018). "Performance
comparison between Kotlin and Java on the JVM:
A case study." Journal of Software Engineering
and Applications, 11(4), 193-202.

[8]. Ho-Won J., Seung-Gweon K., Chang-Shin C.
Measuring software product quality: A survey of
ISO/IEC 9126. IEEE Softw. 2004;21:88–92.
doi: 10.1109/MS.2004.1331309.

[9]. Pinto C.M., Coutinho C. From Native to Cross-
platform Hybrid Development; Proceedings of the
2018 International Conference on Intelligent
Systems (IS); Funchal, Portugal. 25–27 September
2018; pp. 669–676.

[10]. Pouryousef, S.; Rezaiee, M.; Chizari, A. Let me join
two worlds! Analyzing the Integration of Web and
Native Technologies in Hybrid Mobile Apps. In
Proceedings of the 2018 17th IEEE International
Conference on Trust, Security and Privacy in
Computing and Communications/12th IEEE
International Conference on Big Data Science and
Engineering, New York, NY, USA, 1–3 August 2018.

[11]. Chandi, L.; Silva, C.; Martínez, D.; Gualotuña, T.
Mobile application development process: A
practical experience. In Proceedings of the 2017
12th Iberian Conference on Information Systems
and Technologies (CISTI), Lisbon, Portugal, 21–24
June 2017.

[12]. Johansson, D.; Andersson, K. A Cross-Platform
Application Framework for HTML5-based e-
Services, Proceedings of the 11th Annual IEEE
Consumer Communications & Networking

International Research Journal of Engineering & Applied Sciences, IRJEAS
www.irjeas.org, ISSN(O): 2322-0821, ISSN(P): 2394-9910, Volume 7 Issue 1, Jan 2019-Mar 2019, Page 19-24

24
©2019 Copyright IRJEAS. All Rights Reserved

Conference. In Proceedings of the 5th IEEE CCNC
International Workshop on Mobility Management
in the Networks of the Future World (MobiWorld
2014), Las Vegas, NV, USA, 10–13 January 2014.

[13]. Jin, X.; Wang, L.; Luo, T.; Du, W. Fine-Grained
Access Control for HTML5-Based Mobile
Applications in Android. In Proceedings of the

16th Information Security Conference, Dallas, TX,
USA, 13–15 November 2013.

[14]. Martinez, M.; Lecomte, S. Towards the quality
improvement of cross-platform mobile
applications. In Proceedings of the 2017 IEEE/ACM
4th International Conference on Mobile Software
Engineering and Systems (MOBILESoft), Buenos
Aires, Argentina, 22–23 May 2017.

