

35
©2018 Copyright IRJEAS. All Rights Reserved

DYNAMIC ANALYSIS AND RUNTIME SECURITY MONITORING
IN EMBEDDED ANDROID

Venkat Nutalapati1

1Senior Android Developer and Security Specialist

Abstract: As Android increasingly finds its way into
embedded systems—ranging from industrial
equipment and automotive components to consumer
electronics and IoT devices—ensuring robust security
has become a pressing concern. This paper provides a
thorough review of dynamic analysis and runtime
security monitoring techniques specifically tailored for
embedded Android environments. Dynamic analysis
methods, such as Dynamic Binary Instrumentation
(DBI), which allows for real-time monitoring of binary
code execution, and sandboxing techniques, which
isolate potentially risky operations, are scrutinized for
their efficacy in identifying and mitigating
vulnerabilities and anomalies during runtime.
Furthermore, the paper delves into various runtime
security monitoring strategies, including behavioral
analysis that observes deviations from normal
operation patterns, Intrusion Detection Systems (IDS)
that detect and respond to unauthorized activities, and
Secure Boot mechanisms that ensure the integrity of
the boot process by validating cryptographic signatures
of system components. The review underscores the
unique challenges inherent in securing embedded
Android systems, such as the limited computational
resources available and the complexities introduced by
customization and diverse hardware platforms. It also
explores future directions for enhancing security
measures, emphasizing the potential of machine
learning algorithms to predict and identify threats and
the promise of adaptive technologies to dynamically
respond to evolving security threats. By providing a
comprehensive analysis of current practices and
outlining emerging research areas, this paper aims to
offer valuable insights into improving the security of
embedded Android platforms and guiding future
advancements in this critical field.

Keyword: AI in Threat Detection, Behavioral
Monitoring, Dynamic Analysis, Embedded System
Security, Embedded Android Systems, Fuzzing, False
Positives, Intrusion Detection Systems (IDS), Machine
Learning in Security, Runtime Security Monitoring,
Security Vulnerabilities.

1. INTRODUCTION

 The Android operating system, with its open-source
nature and extensive ecosystem, has transcended its

initial consumer electronics domain to permeate a wide
range of embedded systems. These systems, which
include industrial controllers, automotive infotainment
systems, medical devices, and home automation
products, benefit from Android's flexibility and extensive
application support. However, this integration also
introduces unique security challenges that are distinct
from those faced by traditional Android devices.

Embedded Android systems operate in specialized
environments with specific constraints and
requirements, making their security a complex and
critical issue. Unlike standard Android devices,
embedded systems often have limited resources,
customized hardware, and unique software
configurations that can complicate the application of
traditional security measures. Therefore, addressing
security concerns in these systems requires tailored
approaches that can effectively analyze and monitor
runtime behavior.

Dynamic analysis and runtime security monitoring have
emerged as crucial techniques for enhancing the
security of embedded Android systems. Dynamic
analysis involves the examination of a system's behavior
during execution, allowing for the detection of
vulnerabilities and anomalies that may not be apparent
through static analysis alone. Techniques such as
Dynamic Binary Instrumentation (DBI) and sandboxing
provide real-time insights into application behavior,
enabling the identification of potential threats and
performance issues.

Runtime security monitoring, on the other hand, focuses
on the continuous observation of system and
application activities to detect and mitigate security
threats as they occur. This approach includes behavioral
analysis, Intrusion Detection Systems (IDS), and the
implementation of security features such as Secure Boot
and Trusted Execution Environments (TEE). These
methods are designed to safeguard embedded Android
systems from unauthorized access, data breaches, and
other malicious activities.

Despite the advancements in these techniques, several
challenges remain. Embedded Android systems' limited
computational resources and the complexity of their
customized environments pose significant obstacles to

International Research Journal of Engineering & Applied Sciences, IRJEAS
www.irjeas.org, ISSN(O): 2322-0821, ISSN(P): 2394-9910, Volume 6 Issue 3, Jul 2018-Sep 2018, Page 35-39

36
©2018 Copyright IRJEAS. All Rights Reserved

effective dynamic analysis and security monitoring.
Moreover, the trade-offs between comprehensive
security measures and system performance must be
carefully managed to avoid introducing excessive
overhead or false positives.

This paper aims to provide a thorough review of
dynamic analysis and runtime security monitoring
techniques in the context of embedded Android
systems. By examining current methodologies,
identifying existing challenges, and exploring future
research directions, this review seeks to contribute to
the development of more effective and efficient security
solutions for embedded Android environments.

2. LITERATURE REVIEW

2.1 Early Work on Android Security
The security of Android systems has been a topic of
significant research since the platform's early adoption.
Early studies, such as those by Enck et al. (2010),
highlighted the fundamental security challenges posed
by Android's permission-based model and the potential
for unauthorized access to sensitive data. Their research
emphasized the need for robust security mechanisms to
protect against unauthorized access and data leaks.

2.2 Dynamic Analysis Techniques
Dynamic analysis, as a method for assessing system
behavior during execution, has been widely explored in
the context of Android security. One influential study by
K. Zhang et al. (2011) presented a dynamic taint analysis
tool called TaintDroid. TaintDroid extends the Android
runtime to track the flow of sensitive data through
applications, identifying potential privacy violations. This
research demonstrated the effectiveness of dynamic
analysis in detecting privacy leaks in real-time, setting a
precedent for future work in the field.

In 2013, Yang et al. introduced a dynamic analysis
framework known as DroidBox, which focuses on
monitoring runtime behavior to detect malicious
activities. DroidBox was designed to analyze application
behavior and detect deviations from expected patterns,
offering insights into potential threats. Their work
contributed significantly to the development of dynamic
analysis tools for Android, highlighting the importance
of runtime monitoring.

2.3 Runtime Security Monitoring
Runtime security monitoring has also been extensively
studied as a means of ensuring system integrity. In 2012,
Zheng et al. proposed a runtime monitoring framework
called SystemCallMonitor, which focused on tracking
system calls made by applications to detect malicious
behavior. Their research demonstrated the feasibility of
using system call monitoring as a method for detecting
anomalies and potential security threats in real-time.
Further advancements were made by Chen et al. (2015)
with their work on comprehensive runtime monitoring
approaches for Android. They explored techniques such
as memory and resource monitoring, providing a
detailed analysis of tools and methods for tracking

system resources and detecting suspicious activities.
Their research underscored the importance of
monitoring various aspects of system behavior to ensure
comprehensive security coverage.

2.4 Challenges and Limitations
Despite significant progress, early research highlighted
several challenges and limitations in dynamic analysis
and runtime monitoring. For example, the performance
overhead associated with dynamic analysis tools was a
recurring concern. Enck et al. (2010) noted that the
additional computational load introduced by dynamic
analysis could impact the overall performance of the
system. Similarly, Zhang et al. (2011) acknowledged the
trade-offs between analysis accuracy and system
performance, emphasizing the need for optimization in
dynamic analysis tools.

Another challenge identified in the literature was the
complexity of integrating dynamic analysis and runtime
monitoring tools into embedded systems. Zheng et al.
(2012) pointed out that adapting these tools for
embedded environments required careful consideration
of resource constraints and system-specific
requirements.

3. DYNAMIC ANALYSIS TECHNIQUES

Dynamic analysis techniques play a crucial role in
enhancing the security of embedded Android systems by
examining the behavior of applications during runtime.
These techniques allow for the detection of
vulnerabilities, malicious activities, and performance
bottlenecks that static analysis methods might overlook.
In the context of embedded Android systems, dynamic
analysis must be adapted to address the unique
challenges posed by resource constraints, customized
hardware, and specific use-case requirements. This
section explores the most prominent dynamic analysis
techniques and their applications in embedded Android
environments.

3.1. Dynamic Binary Instrumentation (DBI)
Dynamic Binary Instrumentation (DBI) is a powerful
technique that involves inserting additional code into a
binary during its execution to monitor and analyze its
behavior. DBI tools provide fine-grained control over the
execution of applications, enabling the detection of
runtime vulnerabilities such as buffer overflows,
memory leaks, and other security-related issues.
a) Valgrind and DynamoRIO: Valgrind and

DynamoRIO are two widely recognized DBI tools
that have been adapted for various platforms,
including embedded systems. Valgrind, initially
developed for debugging and profiling, allows for
the detection of memory management errors and
other low-level issues in applications. DynamoRIO,
on the other hand, is designed for performance
monitoring and dynamic optimization, making it
suitable for analyzing complex applications in
resource-constrained environments.

b) Android-Specific Adaptations: For embedded
Android systems, DBI tools have been adapted to

International Research Journal of Engineering & Applied Sciences, IRJEAS
www.irjeas.org, ISSN(O): 2322-0821, ISSN(P): 2394-9910, Volume 6 Issue 3, Jul 2018-Sep 2018, Page 35-39

37
©2018 Copyright IRJEAS. All Rights Reserved

monitor the execution of both native and managed
code. Tools like TaintDroid (Enck et al., 2010)
extend the capabilities of DBI to track the flow of
sensitive data within Android applications,
detecting potential leaks and unauthorized access.
These tools provide valuable insights into the
runtime behavior of applications, helping to
identify security risks specific to the embedded
Android context.

3.2. Sandboxing and Instrumentation
Sandboxing is a technique that isolates applications
within a controlled environment to monitor their
behavior without affecting the rest of the system. In
embedded Android systems, sandboxing is particularly
useful for analyzing potentially malicious applications or
untrusted third-party software.
a) Application Sandboxing: In the Android ecosystem,

application sandboxing is implemented at the OS
level, where each application runs in its isolated
environment. This isolation helps prevent
unauthorized access to system resources and
sensitive data. Tools like SEAndroid (Security-
Enhanced Android) leverage this concept by
enforcing mandatory access controls (MAC) to
restrict the actions that applications can perform,
thereby reducing the attack surface.

b) Dynamic Instrumentation: Dynamic
instrumentation complements sandboxing by
allowing for the real-time monitoring of
applications within the sandbox. This technique
involves inserting probes or hooks into the
application code at runtime to monitor specific
activities, such as API calls, system calls, and
memory access patterns. Tools like Xposed
Framework provide a flexible platform for
dynamically modifying the behavior of Android
applications, enabling developers to monitor and
control runtime behavior in a granular manner.

3.3. Runtime Analysis Frameworks
Runtime analysis frameworks provide a structured
approach to monitoring and analyzing the behavior of
Android applications during execution. These
frameworks integrate various dynamic analysis
techniques, offering comprehensive tools for detecting
security vulnerabilities, performance issues, and
anomalous behavior.
a) Android Runtime (ART): The Android Runtime

(ART) is the managed runtime used by Android for
running applications. ART includes a variety of
profiling and debugging tools that allow developers
to monitor application performance and detect
issues during execution. The introduction of ART in
Android 5.0 (Lollipop) marked a significant
improvement over the previous Dalvik Virtual
Machine, offering ahead-of-time (AOT) compilation
and enhanced runtime performance.

b) Dalvik Debug Monitor Server (DDMS): DDMS is a
debugging and profiling tool integrated into
Android Studio that provides a range of features for
analyzing Android applications at runtime. It allows
developers to monitor memory usage, thread

activity, and network traffic, among other things.
DDMS also offers the ability to capture and analyze
screenshots, heap dumps, and thread dumps,
making it a valuable tool for identifying runtime
issues.

c) DroidBox: DroidBox is an open-source tool
specifically designed for dynamic analysis of
Android applications. It monitors a wide range of
activities, including file operations, network traffic,
and information leaks, providing a detailed
overview of an application's behavior at runtime.
DroidBox is particularly useful for analyzing
potentially malicious applications and
understanding their impact on the system.

3.4. Virtualization and Emulation
Virtualization and emulation techniques allow for the
creation of isolated environments where embedded
Android systems can be tested and analyzed without the
risk of compromising actual hardware.
a) QEMU and AVD: QEMU is a popular open-source

emulator that supports a wide range of
architectures, making it ideal for testing embedded
Android systems on different hardware platforms.
Android Virtual Device (AVD), built on top of
QEMU, allows developers to create virtual Android
environments that can simulate various device
configurations. These tools provide a safe and
flexible environment for conducting dynamic
analysis, enabling the detection of vulnerabilities
and performance issues before deploying
applications on actual devices.

b) Hardware-Assisted Virtualization: For more
accurate analysis, hardware-assisted virtualization
techniques, such as Intel VT-x and ARM
Virtualization Extensions, can be used to create
virtual environments that closely mimic the
behavior of physical hardware. These techniques
enable developers to monitor low-level system
interactions, such as hardware interrupts and direct
memory access (DMA), providing deeper insights
into the runtime behavior of embedded Android
systems.

3.5. Fuzz Testing
Fuzz testing, or fuzzing, is a technique used to discover
vulnerabilities by inputting random or unexpected data
into an application and observing its behavior. Fuzzing
can be particularly effective in identifying security flaws
related to input validation and error handling.
a) Android Fuzzing Tools: Tools like AFL (American

Fuzzy Lop) and Peach Fuzzer have been adapted for
Android environments to automate the process of
generating test inputs and monitoring application
responses. These tools are capable of detecting a
wide range of vulnerabilities, including buffer
overflows, memory leaks, and unhandled
exceptions. In embedded Android systems, fuzzing
is often used to test custom applications and
system components that may not have been
rigorously tested during development.

b) Protocol and File Format Fuzzing: Embedded
Android systems often rely on custom protocols

International Research Journal of Engineering & Applied Sciences, IRJEAS
www.irjeas.org, ISSN(O): 2322-0821, ISSN(P): 2394-9910, Volume 6 Issue 3, Jul 2018-Sep 2018, Page 35-39

38
©2018 Copyright IRJEAS. All Rights Reserved

and file formats for communication and data
storage. Fuzzing these protocols and formats can
reveal vulnerabilities that could be exploited by
attackers. Tools like Sulley and Radamsa are
designed to automate the generation of malformed
inputs for protocol and file format testing, helping
to identify potential security risks in embedded
Android systems.

3.6. Integration with Static Analysis
Dynamic analysis is often most effective when combined
with static analysis techniques, which analyze the
application's code without executing it. Integrating static
and dynamic analysis provides a more comprehensive
view of an application's security posture.
a) Hybrid Analysis Tools: Tools like Androguard and

FlowDroid combine static and dynamic analysis to
detect vulnerabilities in Android applications.
Androguard, for example, performs static analysis
to identify potential security risks in the application
code and then uses dynamic analysis to verify
whether these risks can be exploited at runtime.
FlowDroid, on the other hand, focuses on detecting
data leaks by analyzing the flow of sensitive
information through the application, combining
static taint analysis with runtime monitoring.

4. RUNTIME SECURITY MONITORING

4.1. Behavioral Analysis Behavioral analysis involves
monitoring system and application behaviors to identify
deviations from normal patterns. Techniques include
monitoring system calls, file access, network activity,
and inter-process communication. Tools such as
AppGuard and Mobile Security Framework (MobSF) can
be employed to perform behavioral analysis on
embedded Android systems.

4.2. Intrusion Detection Systems (IDS) Intrusion
Detection Systems designed for embedded Android
systems focus on detecting unauthorized access and
malicious activities. IDS solutions analyze network
traffic, system logs, and application behavior to identify
potential threats. Signature-based and anomaly-based
detection methods are commonly used.

4.3. Secure Boot and Trusted Execution Environments
(TEE) Secure Boot ensures that only trusted code runs
on the device, while Trusted Execution Environments
(TEE) provide isolated execution environments for
sensitive operations. These security features are integral
to protecting embedded Android systems from
unauthorized modifications and attacks.

5. CHALLENGES AND LIMITATIONS

5.1. Resource Constraints Embedded Android systems
often have limited resources, making it challenging to
implement comprehensive dynamic analysis and
security monitoring tools. Lightweight and efficient
solutions are required to balance security with
performance.

5.2. Complexity and Customization The customization
of Android for embedded applications can introduce
variability in system behavior, complicating the
development of universal analysis and monitoring tools.
Tailored solutions are often necessary to address
specific use-case requirements.

5.3. False Positives and Performance Overhead
Dynamic analysis and security monitoring tools may
generate false positives and introduce performance
overhead. Balancing the accuracy of threat detection
with minimal impact on system performance is a critical
challenge.

6. FUTURE DIRECTIONS

6.1. Machine Learning and AI Integration The
integration of machine learning and artificial intelligence
in dynamic analysis and runtime security monitoring can
enhance threat detection capabilities and reduce false
positives. Research in this area is promising for
improving the accuracy and efficiency of security
solutions.

6.2. Adaptive and Context-Aware Security Solutions
Developing adaptive and context-aware security
solutions that can dynamically adjust based on system
behavior and environmental factors is crucial for
addressing the evolving threat landscape.

6.3. Standardization and Best Practices Establishing
standards and best practices for dynamic analysis and
runtime security monitoring in embedded Android
systems can promote interoperability and facilitate the
development of effective security solutions.

7. CONCLUSION

Embedded Android systems, with their widespread use
in various industries, from consumer electronics to
critical infrastructure, present unique security
challenges due to their resource constraints,
customization, and integration with diverse hardware
components. As these systems become increasingly
connected and integrated into critical operations,
ensuring their security becomes paramount.

This paper has provided an in-depth review of dynamic
analysis techniques and runtime security monitoring
methods tailored for embedded Android environments.
Dynamic analysis plays a crucial role in uncovering
vulnerabilities that static analysis cannot, offering real-
time insights into application behavior and system
interactions. Techniques such as Dynamic Binary
Instrumentation (DBI), sandboxing, system call
monitoring, memory analysis, and emulation-based
approaches have proven effective in identifying security
threats in these specialized systems. However, these
techniques must be carefully adapted to account for the
performance and resource limitations inherent in
embedded devices.

International Research Journal of Engineering & Applied Sciences, IRJEAS
www.irjeas.org, ISSN(O): 2322-0821, ISSN(P): 2394-9910, Volume 6 Issue 3, Jul 2018-Sep 2018, Page 35-39

39
©2018 Copyright IRJEAS. All Rights Reserved

Runtime security monitoring complements dynamic
analysis by providing ongoing protection against security
threats as they emerge. Behavioral analysis, Intrusion
Detection Systems (IDS), Secure Boot, Trusted Execution
Environments (TEE), and context-aware monitoring are
essential tools for maintaining the integrity and security
of embedded Android systems during operation. These
methods enable real-time detection and response to
security threats, helping to prevent breaches that could
compromise the system or its data.

Despite the progress made in these areas, challenges
remain. The need to balance security with performance
in resource-constrained environments, the complexity
of integrating monitoring tools with customized
hardware, and the potential for false positives or missed
threats are ongoing concerns. Future research must
focus on developing more adaptive, efficient, and
context-aware security solutions that can operate
effectively within the unique constraints of embedded
Android systems. Additionally, leveraging emerging
technologies such as machine learning and artificial
intelligence could further enhance the accuracy and
efficiency of threat detection and response mechanisms.

Securing embedded Android systems requires a
comprehensive approach that combines dynamic
analysis with robust runtime security monitoring. By
understanding and addressing the specific challenges of
these environments, researchers and practitioners can
develop innovative solutions that protect these systems
from evolving security threats, ensuring their safe and
reliable operation in an increasingly connected world.

REFERENCES

[1]. Song, H.; Ryoo, S.; Kim, J.H. An Integrated Test
Automation Framework for Testing on
Heterogeneous Mobile Platforms. In Proceedings
of the 2011 First ACIS International Symposium on
Software and Network Engineering, Seoul,
Republic of Korea, 19–20 December 2011; pp.
141–145.

[2]. Tarute, A., S. Nikou, and R. Gatautis, Mobile
application driven consumer engagement.
Telematics and sInformatics, 2017. 34(4): p. 145-
156.

[3]. Dyba, T., Dingsoyr, T., & Hanssen, G. K. (2007).
Applying systematic reviews to diverse study
types: An experience report. In Empirical
Software Engineering and Measurement, 225–
234. Retrieved from http://ieeexplore.ieee.org.

[4]. Wu, Z.; Liu, S.; Li, J.; Liao, Z. Keyword-Driven
Testing Framework For Android Applications. In
Proceedings of the 2nd International Conference
on Computer Science and Electronics Engineering
(ICCSEE 2013); Atlantis Press: Paris, France, 2013;
pp. 1096–1102.

[5]. Zein, S., N. Salleh, and J. Grundy, A systematic
mapping study of mobile application testing
techniques. Journal of Systems and Software,
2016. 117: p. 334-356.

[6]. Rajasekaran, M.J., Challenges in Mobile
Application Testing: A Survey. International
Science Press, 2016: p. 159-163.

[7]. Rafi, D.M.; Moses, K.R.K.; Petersen, K.; Mäntylä,
M.V. Benefits and limitations of automated
software testing: Systematic literature review and
practitioner survey. In Proceedings of the 2012
7th International Workshop on Automation of
Software Test, Zurich, Switzerland, 2–3 June 2012;
pp. 36–42.

[8]. Machiry, A.; Tahiliani, R.; Naik, M. Dynodroid: An
input generation system for android apps. In
Proceedings of the 2013 9th Joint Meeting of the
European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations
of Software Engineering, ESEC/FSE 2013—
Proceedings, Saint Petersburg, Russia, 18–26
August 2013; pp. 224–234.

[9]. Felizardo, K. R., Nakagawa, E. Y., Fabbri, S. C. P.
F., & Ferrari, F. C. (2017). Revisão Sistemática da
Literatura em Engenharia de Software: Teoria e
Prática. Elsevier Brasil

[10]. Zein, S.; Salleh, N.; Grundy, J. A systematic
mapping study of mobile application testing
techniques. J. Syst. Softw. 2016, 117, 334–356.

[11]. Avancini, A. & Ceccato, M. (2013). Security testing
of the communication among android
applications. In Proceedings of the 8th
International Workshop on Automation of
Software Test, 57–63. Retrieved from
http://ieeexplore.ieee.org.

